Ford Battery R&D with U-M Battery Fabrication Lab

Dr. OuJung Kwon
Cell Chemistry Technical Expert
High Voltage Battery Technology Department
Electrified Powertrain Engineering, Dearborn, MI, USA

July 20, 2016
Ford is expanding its electrified vehicle program worldwide, allowing the company to share technology globally, test batteries virtually, in real time, and accelerate advancements.

Technology
- Battery development to expand globally into Europe and Asia

Investment
- $4.5 BILLION
- Ford to invest $4.5 billion through 2020

R&D
- $2.1 million investment in a battery lab at the University of Michigan to boost research and development

EVs
- Ford to add 13 new EV nameplates, offering electrification on more than 40% of its vehicle lineup by 2020

Growth
- Ford expands EV offerings to growing markets, including Taiwan, Korea and China

Improvements
- New Focus Electric, with a projected 100-mile range and all-new DC fast charging capability, projected to deliver an 80% charge in an estimated 30 minutes
Ford’s electrified platform strategy provides global flexibility.

- Portfolio Approach = HEV/PHEV/BEV (customer-driven)
- Global Flexibility = Electrify Highest Volume Platforms
- Best Value = HEVs Remain Highest Volume
- Affordability Remains Key = Sharing Common Components
Sustainability Blueprint

Near-Term
Leverage Existing Technologies at High Volume

Mid-Term
Substantial Weight Reduction & Expand Electrification

Long-Term
High Volume Electrification and Alternative Energies

- Hybrid
- Plug-in Hybrid
- Battery Electric
- Fuel Cell

• Ford’s sustainability strategy, founded on affordability for millions of customers
Ford’s Electrified Vehicle Sales

- Steady growth in electrified vehicle (FHEV) sales through 2012
- Significant increase in sales starting in 2013 with Gen III FHEV/PHEV/BEV products
- 455k cumulative Ford electrified vehicles sold in U.S. through 2015

Data Source: LMC Automotive
U.S. Electrified Vehicle Sales

Electrified vehicle sales as percent of industry

- Gasoline fuel price (per gallon)
- HEV sales (LIB & Ni-MH)
- PEV sales (LIB)

- Electrified vehicle demand moves with fuel price.
Alternative Fuel Vehicle Sales in U.S., CY2015

<table>
<thead>
<tr>
<th>Rank</th>
<th>Nameplate</th>
<th>Units sold 2015</th>
<th>Units sold 2014</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Toyota Prius Liftback</td>
<td>113,829</td>
<td>122,776</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Ram Ram Pickup Diesel</td>
<td>57,210</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Toyota Prius C</td>
<td>38,484</td>
<td>40,570</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Toyota Camry Hybrid</td>
<td>30,640</td>
<td>39,515</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Toyota Prius V</td>
<td>28,290</td>
<td>30,762</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Tesla Model S</td>
<td>26,400</td>
<td>16,550</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>Ford Fusion Hybrid</td>
<td>24,681</td>
<td>35,405</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>Hyundai Sonata Hybrid</td>
<td>19,908</td>
<td>21,052</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>Nissan Leaf</td>
<td>17,269</td>
<td>30,200</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>Volkswagen Passat Diesel</td>
<td>16,845</td>
<td>28,756</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>Volkswagen Jetta Diesel</td>
<td>16,175</td>
<td>37,397</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>Chevrolet Volt</td>
<td>15,393</td>
<td>18,805</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>Lexus CT200h</td>
<td>14,657</td>
<td>17,673</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>Ford C-Max Hybrid</td>
<td>14,177</td>
<td>19,162</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>Toyota Avalon Hybrid</td>
<td>11,956</td>
<td>17,048</td>
<td>13</td>
</tr>
<tr>
<td>16</td>
<td>Kia Optima Hybrid</td>
<td>11,492</td>
<td>13,776</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>Lexus ES Hybrid</td>
<td>11,241</td>
<td>14,837</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>Honda Accord Hybrid</td>
<td>11,065</td>
<td>13,977</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>BMW i3</td>
<td>11,024</td>
<td>6,092</td>
<td>29</td>
</tr>
<tr>
<td>20</td>
<td>Ford Fusion Energi</td>
<td>9,750</td>
<td>11,550</td>
<td>19</td>
</tr>
<tr>
<td>21</td>
<td>Volkswagen Golf Sportwagon Diesel</td>
<td>8,886</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Lincoln MKZ Hybrid</td>
<td>8,403</td>
<td>10,033</td>
<td>20</td>
</tr>
<tr>
<td>23</td>
<td>Lexus RX 400 / 450 h</td>
<td>7,722</td>
<td>9,351</td>
<td>21</td>
</tr>
<tr>
<td>24</td>
<td>Ford C-Max Energi</td>
<td>7,591</td>
<td>8,433</td>
<td>22</td>
</tr>
<tr>
<td>25</td>
<td>Volkswagen Golf Diesel</td>
<td>7,149</td>
<td>6,254</td>
<td>28</td>
</tr>
<tr>
<td>26</td>
<td>Subaru XV Crosstrek Hybrid</td>
<td>5,589</td>
<td>7,926</td>
<td>24</td>
</tr>
<tr>
<td>27</td>
<td>BMW X5 Diesel</td>
<td>5,121</td>
<td>6,292</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>Honda Civic Hybrid</td>
<td>4,887</td>
<td>5,070</td>
<td>31</td>
</tr>
<tr>
<td>29</td>
<td>Fiat 500e</td>
<td>4,516</td>
<td>1,503</td>
<td>52</td>
</tr>
<tr>
<td>54</td>
<td>Ford Focus EV</td>
<td>1,582</td>
<td>1,964</td>
<td>47</td>
</tr>
</tbody>
</table>

Total Sales: 654,928

Automotive LIB Supply in U.S., CY2015

- **Number of LIB vehicles sold**
 - Ford: 66,184
 - Nissan: 26,058
 - Hyundai: 32,430
 - GM: 23,605
 - Honda: 19,363
 - Tesla: 26,608
 - Toyota: 4,209
 - BMW: 14,248
 - Volkswagen: 6,639
 - Daimler: 3,475
 - FCA: 4,516
 - Others: 201

- **Number of LIB cells used**
 - Panasonic (Sanyo): 6.45M
 - AESC: 3.72M
 - LG Chem: 7.59M
 - Blue Energy / LEJ: 1.15M
 - Panasonic (18650): 194M
 - SDI: 1.96M

- **Energy of LIB cells used**
 - Panasonic (Sanyo): 324MWh
 - AESC: 443MWh
 - LG Chem: 412MWh
 - Blue Energy / LEJ: 2,163MWh
 - SDI: 378MWh

- **227,536 of LIB vehicles were sold in 2015.**
- **3.8 GWh of LIB cells were installed.**

[http://www.hybrids.com/market-dashboard/]
Motivation

Coin cell level (1-5mAh)
- Capacity
- Efficiency
- Rate Capability
- Voltage window

Battery pack level (25-200Ah)
- Cell Integration
- Electric/Mechanical/Thermal Management
- Vehicle Simulations & Tests

- *Properties measured at the coin-cell scale don’t tell the whole story.*
Motivation, example #1

- Structural stability for high Ni content layered oxide

Case 1: Depth of Discharge (DOD)
- DOD 60%
- DOD 100% swing

Case 2: Elevated temperature

Case 3: Non-uniform cracks

Test durability for 1,000+ cycles

coin half cell(X)
Motivation, example #2

- High capacity Si-Graphite Composite

72%@300 vs. 75%@50

Coin half cell 18650 full cell

ECS Transactions, 1 (26) 73-77 (2006)
• Prototyping LIB cells
 – We need a “stepping stone” scale where the complexities of the modern manufacturing technology are included, but at a scale that is manageable in a research context.
 – The gap between an EV cell (15-60Ah) and a coin cell (1-5mAh) is too large to allow for meaningful extrapolations on:
 • performance
 • durability
 • safety
 • manufacturing feasibility & cost
XALT Energy (Pouch)
A123 (Pouch)
PSU (18650)
ANL (Pouch and 18650)
BIC (18650)
KY-ANL Battery Center
ORNL (Pouch) SNL (18650)
SAFT
LGCMI (Pouch)
U. Michigan (18650, Pouch)
UWM w/ JCI (Pouch)
JCI (Can)

Government funded laboratory
Automotive Cell Mass production
University
UM Phoenix Memorial Lab: Past and Future

- Michigan Memorial Phoenix Project after World War II
- Ford Nuclear Reactor commissioned in 1956

- Lab was renovated and rededicated on Oct 14th 2013
- A joint battery lab project announced officially
- Grand Opening on October 2nd 2015

http://energy.umich.edu/project/battlab
The Partnership

- Building a pilot-scale laboratory in-house would be constrained by budget, personnel, lab space
- UMEI provides facilities and dedicated technical staff
- Access to State and Federal funds ($5M from MEDC, $750k from CERC)
 - A bigger facility with better capabilities
 - Flexible facility that can accommodate multiple cell formats
- Donations + 10-15% Academic discounts
- Better utilization of equipment, higher level of expertise possible in a well-staffed and well-used facility.
- Opportunity for close collaborations with U of M staff, students and other partners.
- New educational, recruiting and research opportunities
• World-class, open access user-facility
 – Multiple scales for cell fabrication
 coin cell, 18650 cell, pouch cell (up to 72mm x 220mm format)
 – Highest quality fabrication equipment

• Key part of battery technology infrastructure in Michigan and U.S.
 – To support multiple start-up companies
 – To support ARPA-E and USABC

• Fabrication and testing of smaller cells has several benefits:
 • Faster, less expensive testing
 • Validation of electrochemical models
 • Exploration of cell designs and robustness of manufacturing processes
Phoenix Memorial Lab Layout

Michigan Memorial Phoenix Laboratory – 2nd Floor

Approximate space allocation:

- Pilot Mixing & Coating: 930 ft²
- -40°C Dew Point Dry Room: 675 ft²
- Laboratory and Characterization: 1130+ft²
Pilot Scale Mixing

Planetary Mixer
- 2-3 hours mixing time
- 3-5L Working volume
- Max 75 rpm (Planetary) and 7500 rpm (Homogenizing Disperser)

Dry Powder Mixing 20-30 min
High Shear 20-30 min
Mixing 60 min
Additional Solvent
Deaeration 10+ min
Pilot Scale Coating

- **Multi-Head Coater**
 - Slot-die, Comma Reverse, Micro-gravure
 - Continuous and Intermittent Pattern Coating
 - 2 drying zones with 4 meter oven, IR heater in 1st zone
 - Edge position and auto tension control
 - Max 5m/min coating speed
Calendering Press
- 60kN Press
- Heated roll, up to 150°C
- Edge position and auto tension control
- Max 10m/min

Slitter
- Multiple material capability
 - Cathode, Anode, Separator
- Spacer changeable knife cartridge
- Max 10m/min
Cell Assembly in Dryroom (1)

Cycle time: 2 min, 13 (+) / 14 (-) Cycle time: 10s
Cell Assembly in Dryroom (2)

- Cell assembly takes place inside -40°C dew point dry room
- 18650 jelly rolls created on a KOEM automated winder (Single-, Middle-, Multi-tab J/R available)
- 18650 cells assembled on six mPLUS semi-automated machines

18650 cell assembly process
High durability, high capacity baseline lithium ion cell performance demonstrated:
 - Baseline cells showed ca. 90% capacity retention after 500 1C cycles
18650 vs. Automotive Cell

- High capacity cathode
- High capacity anode
- High voltage cathode and electrolyte
- Thin separator & foils

Material breakthrough

• **18650 is a best surrogate size to compare to current technology development trends and prototype cell performances as there are various grades of 18650 cells commercially available to benchmark.**
Potential Projects

- **FMEA Study**
 - Deficient electrolyte

- **Electrochemical Modeling**
 - Graphs showing OCP vs. SOC, Cathode and Anode potential vs. LVL, and Li diffusion coefficient vs. Temperature.
Future Ford’s Automotive LIB R&D

- **Material**
 - Next-generation materials
 - Strategic materials

- **Manufacturing**
 - Cell design & process
 - Performance & Safety testing
 - Cost analysis

- **Management**
 - Electrochemical & Thermal model
 - Prediction of battery performance and degradation under vehicle dynamic conditions
 - Integration with vehicle simulation and control algorithm development

- *The pilot-scale joint lab will provide a key resource for a wide range of development partners and enable stronger interactions with all partners in Ford R&D process.*