Nissan Electric Vehicle and Future Vision

JULY 20th, 2016
Jonathon RATLIFF
Manager
EV System Engineering Department
Nissan Technical Center
Contents

- EV Customer Expectation
- Technical Breakthrough of EV
 - Battery
 - E-Powertrain
 - Charging
- Summary
EV customers expectation

Range: Mileage per Charge

Drivability: Driving Performance

Charging: Easy to Charge

Cost: Vehicle Price
Technology Trend: Driving Range

- Double driving range in the near future

<table>
<thead>
<tr>
<th>Year</th>
<th>Range (mile)</th>
<th>Battery (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>73</td>
<td>24</td>
</tr>
<tr>
<td>2013</td>
<td>84</td>
<td>24</td>
</tr>
<tr>
<td>2016</td>
<td>107</td>
<td>30</td>
</tr>
<tr>
<td>2017 - 2020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

< EPA label >
Technology Trend: Drivability

- Increased motor power, plus AWD
Technology Trend: Charging

- QC power increase with Battery capacity

Benchmarking of Quick charge performance

Charged Power in 30 min [KWh]

<table>
<thead>
<tr>
<th>Battery Capacity [KWh]</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>QC 150KW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC 120KW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC 100KW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC 50KW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAX Power of Quick charger

- EV-01
- EV-02
- EV-03
- EV-04
- EV-05
- EV-06 (Announce)

NISSAN MOTOR CORPORATION
Technical breakthrough of EV

<table>
<thead>
<tr>
<th>Key Technology</th>
<th>Battery</th>
<th>e Power-Train</th>
<th>Charging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>High capacity</td>
<td>High power</td>
<td>N/A</td>
</tr>
<tr>
<td>Drivability</td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Charging</td>
<td></td>
<td></td>
<td>High power</td>
</tr>
<tr>
<td>Cost</td>
<td>High capacity</td>
<td></td>
<td>High power</td>
</tr>
</tbody>
</table>

- **Battery**
 - New material
 - Pack design
- **e Power-Train**
 - Semiconductor
 - Magnetic material
- **Charging**
 - High power
 - Wireless

- **Cost**
 - High capacity
 - High power

- **Impact**

NISSAN MOTOR CORPORATION
Technical breakthrough of EV

<table>
<thead>
<tr>
<th>Key Technology</th>
<th>Battery</th>
<th>e Power - Train</th>
<th>Charging</th>
</tr>
</thead>
<tbody>
<tr>
<td>New material</td>
<td>High capacity</td>
<td>High power</td>
<td>Convenience</td>
</tr>
<tr>
<td>Pack design</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>★★★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Drivability</td>
<td>★</td>
<td>★★★</td>
<td>N/A</td>
</tr>
<tr>
<td>Charging</td>
<td>★</td>
<td>N/A</td>
<td>★★★</td>
</tr>
<tr>
<td>Cost</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
</tr>
</tbody>
</table>
Battery technology

Autonomy range expansion
Further acceleration performance
Flexibility for various vehicles

High energy density High power density
※Maintain Safety and Reliability

Dense packaging technologies
～Module, Stack, Pack～
1) High density
2) Low resistance connection
3) Flexible packaging

Materials
～Anode, Cathode, Separator, electrolyte～
1) Energy density, 2) Power density, 3) Safety
Cell material and module innovation

- Improve chemical structure
- Increase the number of cell-stacking (High density stacking)

<table>
<thead>
<tr>
<th>Cell material and module innovation</th>
<th>24kWh Current</th>
<th>Future materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrodes & Cell</td>
<td>Cathode</td>
<td>Manganese (M)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nickel (N)</td>
</tr>
<tr>
<td>Anode</td>
<td></td>
<td>Cobalt (C)</td>
</tr>
<tr>
<td>Stack /Module</td>
<td></td>
<td>Graphite (Gr)</td>
</tr>
<tr>
<td>4cell module</td>
<td>Packaging efficiency improvement</td>
<td>Multiple cell In High density stack</td>
</tr>
<tr>
<td>Li amount increase</td>
<td>Li acceptance improve</td>
<td></td>
</tr>
</tbody>
</table>
Packaging innovation

- More than 2 times the battery capacity within the same size constraints as the current one

24-30 kWh Pack
(LEAF Current model)

Larger capacity battery

Today

Tomorrow

Module

New stack

Current cell

High capacity cell
Packaging innovation
Technical breakthrough of EV

<table>
<thead>
<tr>
<th>Key Technology</th>
<th>Battery</th>
<th>Charging</th>
</tr>
</thead>
<tbody>
<tr>
<td>New material</td>
<td>High capacity</td>
<td>N/A</td>
</tr>
<tr>
<td>Pack design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semiconductor</td>
<td>High power</td>
<td>High power</td>
</tr>
<tr>
<td>Magnetic material</td>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Range	★★★	★	★
Drivability	★	★★★	N/A
Charging	★	N/A	★★★
Cost	★★★	★★★	★★★

Note: The ★ symbols represent the level of development or achievement for each category.
e-PT technology

Further autonomy range expansion
Further acceleration performance
Flexibility for various vehicles

- Efficiency
- Power
- Size
- Cost

- Cooling
- Integration
- Integration
- High voltage components
- New magnet (Rare earth reduction)
- New structure, WBG devices

Magnet
Magnetic Steel
Capacitor, etc
Power Module

NISSAN MOTOR CORPORATION
Magnet innovation

- Reduced Dy contents in the magnet by 40%, applying the grain boundary diffusion magnet technology
- Towards 2020, further Dy reduction and/or Zero to be expected
Electromagnetic steel innovation

- Used Silicon steel (Electromagnetic steel sheet) of less than 0.35 mm in thickness
- The thin iron plate expected small Iron loss and high-efficiency

Trend of the Silicon steel

- Magnetic flux density B_{50} [T]
- High frequency iron loss $W_{10/400}$ [W/Kg]

Key Points

- **Today**
 - Magnetic flux density: less than 0.35 mm ($t=0.2 \sim 0.3$ mm)
 - High frequency iron loss

- **Tomorrow**
 - Magnetic flux density: 0.35 mm
 - High frequency iron loss

Legend

- High performance
- Upper grade
- Standard
Power Semiconductor innovation

- Wide Band Gap technologies expected for System-level improvement

Low-loss

- Power Loss
 - Si
 - GaN, SiC
 - ~40% down

- Benefits:
 - Autonomy range extension
 - Cooling cost reduction

High-frequency Switching

- ~75% down

- Benefits:
 - Parts size (cost) reduction

Wide Band Gap (WBG) materials (GaN, SiC) promise significant improvements in efficiency and cost reduction for power semiconductor applications.
Power Semiconductor innovation

- 2 directions for SiC / GaN application

![Diagram showing switching frequency vs. power with categories like Power Grid, Train, EV drive, EV charger, Home appliance, Si, and GaN.]
Electric drive enables high power models

- Game change of high power models by common EV assets + dedicated PF
- High power performance with disruptive MSRP thanks to the architecture

e.g. AWD EV w/ 3 motors (360kW)
Technical breakthrough of EV

<table>
<thead>
<tr>
<th>Key Technology</th>
<th>Battery</th>
<th>e Power</th>
<th>Charging</th>
</tr>
</thead>
<tbody>
<tr>
<td>New material</td>
<td>High capacity</td>
<td>High power</td>
<td>Convenience</td>
</tr>
<tr>
<td>Pack design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semiconductor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic material</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature</th>
<th>Battery</th>
<th>e Power</th>
<th>Charging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>3 stars</td>
<td>1 star</td>
<td>1 star</td>
</tr>
<tr>
<td>Drivability</td>
<td>1 star</td>
<td>3 stars</td>
<td>N/A</td>
</tr>
<tr>
<td>Charging</td>
<td>1 star</td>
<td>N/A</td>
<td>3 stars</td>
</tr>
<tr>
<td>Cost</td>
<td>3 stars</td>
<td>3 stars</td>
<td>3 stars</td>
</tr>
</tbody>
</table>
High-power quick charge

- Widening standard and developing technology are needed for infrastructure and vehicles, as well as batteries.

Current maximum power 50kW ➜ over 100kW

- Charging gun for high power
- User friendly charging cable
- Small relay on board
- Battery pack capability
- Battery pack
Wireless Charging System

Coil (Vehicle side)

Power Unit

Remote auto parking

Coil (Road side)

Prototype

NISSAN MOTOR CORPORATION
Summary
Focus on customer expectations and the future of EV development

Nissan continues to lead Zero Emission Vehicle development and implementation

Future development of EV performance:
- Battery: Higher density, higher power output
- e-PT: Efficiency improvement, acceleration performance
- Charging: High power, wireless
Thank you for your attention!