Status of EPA’s Technology Assessment for the Midterm Evaluation

2022-2025 GHG Emissions Standards

July 23, 2014
1. Introduction

2. Technology Effectiveness & Tool Development
 a) Vehicle, Engine, Transmission Benchmarking
 b) Models and Validation

3. Technology Cost Updates

4. Mass Reduction Studies

5. Consumer Issues

6. Wrap-up
EPA, NHTSA, and California ARB have committed to collaborate on a midterm evaluation of the standards for model years 2022-2025
- Draft Technical Assessment Report for public comment by Nov 15, 2017
- EPA final determination by Apr 2018

The midterm evaluation could result in a determination that the 2022-2025 standards should remain unchanged, or be changed to a stringency level either higher or lower

Agencies will review a wide range of factors such as:
- Powertrain improvements, weight reduction and safety impacts, market penetration and consumer acceptance of fuel efficient technologies, fuel prices, infrastructure, consumer payback periods, car/truck fleet mix changes, etc.
What have we been doing since 2012?

Learning from others

- Reviewed hundreds of new papers and reports in the literature
- Attended nearly two dozen technical conferences (SAE, battery developments, mass reduction, powertrain advancements, etc)
- Met thus far with:
 - more than 20 suppliers (transmissions, materials, active grill shutters, electrical components, turbochargers, sensors, etc.)
 - majority of OEMs (in some cases, multiple times)
 - other stakeholders (e.g., Environmental NGOs and consumer groups)
- Will continue active stakeholder outreach throughout process

Initiating new technical work

- Published several peer reviewed papers in 2013-2014 (see Appendix)
- EPA will continue this work for 2015 and beyond to inform the midterm evaluation

Today, EPA will present high level overview of work initiated in 2012-2014
Agenda

1. Status of LD GHG Rule & MTE Activities

2. Technology Effectiveness & Tool Development
 a) Vehicle, Engine, Transmission Benchmarking
 b) Models and Validation

3. Technology Cost Studies

4. Mass Reduction Studies

5. Economic Factors

6. Wrap-up
NVFEL is a state of the art test facility that provides a wide array of dynamometer and analytical testing and engineering services for EPA’s motor vehicle, heavy-duty engine, and nonroad engine programs which:

- Certify that vehicles and engines meet federal emissions and fuel economy standards
- Test in-use vehicles and engines to assure continued compliance and process required enforcement actions
- Analyze fuels, fuel additives, and exhaust compounds
- Develop future emission and fuel economy regulations
- Develop laboratory test procedures
- **Research future advanced engine and drivetrain technologies** (involving 20+ engineers – modeling, advanced technology testing and demonstrations)

In the rulemaking,
- Vehicle simulations were a key element in assessing feasibility
- Standards assume increasing use of advanced technology

Engines
- Gasoline Direct Injection (GDI)
- Turbocharging & downsizing
- High CR Naturally Aspirated
- Diesels
- Start-stop systems

Chassis
- Advanced transmissions
- Mass reduction
- Improved aerodynamics
- Low RR tires
- Efficient accessories
- Improved A/C

Hybrids
- Mild hybrids
- Strong hybrids
- PHEV/EREVs
- EVs

Manufacturers are already implementing newer technology.

As technology is implemented, testing helps us gain a better understanding of how technologies are implemented and provide for improved calibration of vehicle simulation tools.
We are already seeing innovations in the marketplace beyond what EPA considered in setting the standards ... just a few examples:

Powertrain
- Manufacturers are developing new technologies we didn’t even consider in the rule, such as Mazda’s *ultra-capacitor based start-stop system* and Volvo’s *flywheel hybrid system*.
- Manufacturers are marketing technologies in greater volumes than we projected, such as *increasing popularity of diesels* in the Ram 1500 pickup, and coming in Nissan Titan and BMW sedan.
- Manufacturers are applying technology differently than we expected, such as Volkswagen’s application of *cylinder deactivation on a 4-cylinder engine*.

Transmissions
- *8-speed transmissions entering market sooner* that we projected.
- *9-speeds have been introduced* from Chrysler and Daimler.
- *10-speed developments* announced by GM/Ford jointly, VW, Hyundai, Kia.
- New generation *continuously variable transmissions* offered by Nissan, Honda, Subaru, others.
And innovations are not just limited to engines and transmissions:

- **Active Aerodynamics**
 - Active ride height on Jeep Grand Cherokee and Dodge Ram pickup
 - Active grill shutters on Chevy Cruze Eco and Ford Focus

- **Light-weighting**
 - Design optimization for geometry and material (Acura MDX, Cadillac ATS, many more)
 - Widespread adoption of aluminum hoods and fenders
 - Aluminum body structures in mass market vehicles (F150)
We are benchmarking vehicles with several important technologies:

Engines
- Downsized turbocharged
- High CR naturally aspirated
- High BMEP

Transmissions
- AT – 8 and higher speed
- DCT – 7 and higher speed
- CVT – High ratio spread
- Early upshift strategies
- Shift optimization strategies

Architecture
- Conventional
- Mild hybrid (includes start/stop)
- Power-split hybrid
- P2 hybrid
- Plug in hybrid vehicles
- Extended range electric vehicle
- Electric vehicle

e-Motors/Batteries
- Various lithium-ion types
- Permanent magnet motors
- Induction motors
Engine benchmarking/development:

- **GDI engines** – a key enabling technology - are rapidly penetrating the market
 - Turbocharged & downsized engines
 - High compression ratio naturally aspirated engines
- **Considering challenges:** turbo lag, engine stability, NVH

Technical Approach:

- Test engine **tethered to chassis** to take advantage of chassis controller
- Develop **operational maps** and reverse engineer engine control strategy
- Explore **limits of engine control** (eg: flexibility from multiple injections)
- Explore **new technology** independently and with supplier partnerships (eg: cooled EGR to reduce throttling losses and eliminate enrichment)
Transmission technology is evolving rapidly

- Over 60% of today’s new vehicles have 6 or more gears
- Use of CVT’s is growing rapidly
- Dual Clutch Transmissions (DCTs) are in the market

Controls (shift logic) are critical to effectiveness

- We are looking at efficiency attainable using advanced engines coupled with advanced transmissions/shift strategies
- Manufacturers are balancing efficiency, launch performance, NVH and customer acceptance

Approach to In-Vehicle Benchmarking

Adding sensors to measure torques

![Diagram of vehicle components]

Monitoring operating CAN data

<table>
<thead>
<tr>
<th>VW JETTA HYBRID SIGNAL LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Torque</td>
</tr>
<tr>
<td>Engine Speed</td>
</tr>
<tr>
<td>A/F Ratio</td>
</tr>
<tr>
<td>Ambient Pressure</td>
</tr>
<tr>
<td>Ambient Temperature</td>
</tr>
<tr>
<td>Throttle Angle</td>
</tr>
<tr>
<td>Fuel Flow Rate Commanded</td>
</tr>
<tr>
<td>Fuel Flow Rate Measured</td>
</tr>
<tr>
<td>Mass Air Flow</td>
</tr>
<tr>
<td>Intake Manifold Pressure</td>
</tr>
<tr>
<td>Intake Manifold Temperature</td>
</tr>
<tr>
<td>Exhaust Manifold Temperature</td>
</tr>
<tr>
<td>Coolant Temperature In</td>
</tr>
<tr>
<td>Coolant Temperature Out</td>
</tr>
<tr>
<td>Engine Oil Temperature</td>
</tr>
</tbody>
</table>

Testing vehicles using various cycles

- Transient cycles on chassis dyno (FTP, HWFET, US06, etc...)
 - CO₂ and fuel consumption
 - Criteria pollutants
 - Battery state of charge

- Steady state operation on chassis dyno
 - Generate engine efficiency map
 - Generate transmission efficiency map
 - Characterize torque converter

- Vehicle speed sweeps on chassis dyno
 - Generate shift/timing maps
 - Torque converter lock-up

Capturing wide range of data signals

- Added torque sensors
- Operating CAN data
- Other added instrumentation
Some of EPA’s LD Vehicle Benchmarking Projects

Vehicles already tested:

<table>
<thead>
<tr>
<th>2010 Toyota Prius</th>
<th>2011 Sonata Hybrid</th>
<th>2013 European Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vehicles we are actively testing:

Automatic Transmission
- ✓ 2013 Chevrolet Malibu, 2.5L with 6-Speed
- ✓ 2013 Chrysler 300, 3.6L with 8-Speed
- ✓ 2012 Mercedes E350 BlueTEC (3.0L V6 Turbo Diesel with 7-Speed)

Continuously Variable Transmission
- ✓ 2013 Nissan Altima SV, 2.5L with CVT

Start/Stop Mild Hybrid
- ✓ 2013 Chevrolet Malibu Eco, 2.4L with 6-Speed and Belted Alternator Starter

P2 Hybrid
- ✓ 2013 VW Jetta Hybrid – Turbo P2 Hybrid with 7-Speed Dual Clutch Transmission

Extended Range Electric Vehicle
- ✓ 2013 Chevrolet Volt

Transport Canada (with EC & NRC Canada)
- ✓ 2013 Hyundai Sonata 2.0L Turbo 6-Speed AT
- ✓ 2012 Toyota Prius PHEV 1.8L, 4.4 kW-hr Lithium Ion Battery, 58 kW Electric Motor

Candidate vehicles we are considering testing:

- **2015 Acura TLX** – 2.4 L I4 GDI 206 Hp, 8-spd DCT w/ TC, maybe 9-spd
- **2014 BMW 3 Series** – 2.0 L I4 180 Hp, 8 Speed AT
- **2014 Ram 1500 HFE Regular Cab 4x2** – 3.6 V6 305 Hp, 8 Speed AT
- **2014 Jeep Cherokee Sport 4x4** – 2.4 L I4 184 Hp, 9 Speed AT

- • EPA plans to publish results on an ongoing basis.
- • EPA can present detailed briefings at a future meeting with the Committee.
During the rulemaking...

- In following with the 2010 NAS Committee’s recommendations to utilize more vehicle simulation, EPA used Ricardo’s proprietary vehicle simulation model to create a robust prediction of GHG emissions from future LD vehicles
- Model inputs were generated from Ricardo tests, modeling, experience & expertise
- Some source code, algorithms and model inputs are able to be shared

Going forward, there are many options for performing vehicle simulations and more than one could be used to inform the MTE...

- Public domain / university sources
- Independent laboratories
- OEM In-house Models
- Easy 5
- AVL CRUISE
- GT-Drive
- Autonomie
- EPA Modeling
Goals for EPA Modeling for 2022-2025 analysis...

- Faster turn around for adopting new information
- First-hand knowledge of future technologies and how they are captured in the simulations
- Create vehicle simulation models that would be more transparent using the GEM* and ALPHA* models for GHG compliance that were used for HD/MD trucks and GHG rulemaking for LD vehicles
- Apply EPA’s extensive experience and expertise in testing, advanced technology and modeling
- Design both ALPHA and GEM models to share design, structure and code, developed by EPA in Matlab Simulink code (EPA began development in 2010)
- Validate models using data inputs generated from its in-house lab testing and other sources
- Share code, inputs and results with the public as much as possible

* GEM – Greenhouse Gas Emissions Model
* ALPHA – Advanced Light-Duty Powertrain and Hybrid Analysis

For more sources of information about GEM and ALPHA models, see publications list in the appendix slide.
Tools to Model Future Fleet

“Optimization Model for reducing Emissions of Greenhouse gases from Automobiles”

ALPHA Model
Assesses Combinations of Light-Duty Technologies

- Quantifies effectiveness of a technology or groups of technologies
- Helps assess feasibility of light-duty standards

OMEGA Model
Assesses Potential Compliance Path with New LD GHG Rules

- Determines cost efficient path(s) of adding technology to vehicles in order to achieve regulatory compliance
- Quantifies economic and environmental impacts of technology changes/improvements in vehicle fleets
- Requires many scenarios of future vehicle technologies and their effectiveness (among many other model inputs) on reducing GHG emissions

Lots of DATA!

Component Data
- engine
- transmission
- electrical components
- chassis, etc.

Vehicle Data
- steady-states
- transient cycles

OMEGA is used to evaluate a future fleet’s potential compliance path with LD GHG standards

- Feasibility analysis of how a fleet might utilize these technologies to comply with LD standards, not a market prediction
 - Manufacturer’s engineering, marketing, or other considerations may lead them to a different path
 - Model assumes that technology availability and cost is equivalent across manufacturers
- Detailed fleet baseline on relevant technologies for ~1300 current models in the light duty fleet (modeled as ~250 vehicle platforms)
- Future vehicle sales are based on Economic projections from DOE/EIA, and Industry forecasts from JD Powers and CSM (Now IHS)
Modeling Tools: ALPHA, Lumped Parameter Model (LPM) and OMEGA

Transparent processes will generate “technology effectiveness” inputs for the OMEGA model

- Use EPA lab and other data to validate ALPHA model
- Use ALPHA model to verify and supplement 2008 & 2011 Ricardo simulations
- Use ALPHA simulation results (and other data sources) to update LPM as appropriate
- Use LPM to generate vehicle technology packages (used as inputs to OMEGA)
1. Status of LD GHG Rule & MTE Activities

2. Technology Effectiveness & Tool Development
 a) Vehicle, Engine, Transmission Benchmarking
 b) Models and Validation

3. Technology Cost Studies

4. Mass Reduction Studies

5. Consumer Issues

6. Wrap-up
Mild Hybrid Cost Teardown Study

- Study by FEV/Monroe to determine incremental cost from base vehicle to the vehicle using GM eAssist Mild Hybrid
- Draft study is complete and will soon undergo peer review
- Public release after peer review
Diego
Cost Teardown Study

- Study to determine incremental cost to convert gasoline base vehicles to diesel for light duty through class 3
- Study to be completed in Q1 2015

Scope of study:

<table>
<thead>
<tr>
<th>Category</th>
<th>Gasoline (base)</th>
<th>Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD Pass Car</td>
<td>VW Passat V6 3.0L VR6 DOHC</td>
<td>VW Passat TDI 2.0L I4 Turbo Diesel DOHC</td>
</tr>
<tr>
<td>LD Truck/SUV</td>
<td>Ford F150 5.4L 5.4L V8 SOHC</td>
<td>VW Passat TDI - Scaled 3.0L V6 Turbo Diesel DOHC</td>
</tr>
</tbody>
</table>
Agenda

1. Status of LD GHG Rule & MTE Activities

2. Technology Effectiveness & Tool Development
 a) Vehicle, Engine, Transmission Benchmarking
 b) Models and Validation

3. Technology Cost Studies

4. Mass Reduction Studies

5. Consumer Issues

6. Wrap-up
Scope of Study

- Based on a 2011 4x4 Silverado 1500 Crew Cab
- Builds off of previous FEV/EDAG/Monro approach used for Toyota Venza, but with significant tailoring for a pickup truck.
- Addition of Dynamic and Durability analyses
 - Dynamic analyses done with instrumenting vehicle and running on test track
 - Includes bed and frame durability under loaded conditions

Draft/Final Report Timing:

- Undergoing peer reviewer this summer
- Will be publically released in Fall 2014/Winter 2015

Major deliverables for LD MTE

- Inform the development of a cost curve ($/kg per %MR) for light weighting for light duty trucks (0-20%+MR)
1. Status of LD GHG Rule & MTE Activities

2. Technology Effectiveness & Tool Development
 a) Vehicle, Engine, Transmission Benchmarking
 b) Models and Validation

3. Technology Cost Studies

4. Mass Reduction Studies

5. Consumer Issues

6. Wrap-up
Market Acceptance

• EPA is closely monitoring the acceptance of emerging technologies and their implementation
 – Example technologies that are highly visible to the consumer
 • DCT’s
 • Start/stop
 • Turbo downsizing
 – Implementation of Technologies
 • Malibu is a good example of start/stop
 • Manufacturers have adopted “indexed shifting” of CVT’s

• Current Projects Associated with Consumer Acceptance
 – Content analysis – how are automotive experts perceiving new technologies
 – Satisfaction surveys – direct feedback from consumers on new vehicle purchases
 – Developing a consumer choice model with Oakridge National Lab
 • A consumer vehicle choice model can be used to better understand the potential effect of vehicle GHG/fuel economy standards on
 – Vehicle sales
 – Fleet mix
 • Currently validating the model against actual market previous performance
Agenda

1. Status of LD GHG Rule & MTE Activities

2. Technology Effectiveness & Tool Development
 a) Vehicle, Engine, Transmission Benchmarking
 b) Models and Validation

3. Technology Cost Studies

4. Mass Reduction Studies

5. Consumer Issues

6. Wrap-up
Continuing to Track Commercialization Trends

What trends are we following?

• Technology availability and applications to vehicles
 – Building upon Fuel Economy Trends data
 – Monitor fleet-wide tech availability/penetration
 (electric power steering, active grill shutters, start/stop, lightweight materials…)

• Vehicle characteristics
 – Technical specifications (gear ratio spreads, torque, compression ratio…)
 – Performance (towing/hauling capacities, acceleration…)
 – Dimensional (overall vehicle size, frontal area, fr/rr overhangs, curb weights…),

• Related manufacturing issues
 – Platform sharing
 – Redesign cadence

• Compliance and credits
 – Annual EPA GHG Performance Report
We draw data from existing EPA data (VERIFY, FE Trends, GHG performance report), third party and original data, industry and popular press.

Nearly 35% of projected MY 2014 production already meets Model Year 2016 targets
Thank-you!
Appendix: 2013/2014 MTE Related EPA/OTAQ Publications

2013 ------------------------

2014 ------------------------