Virtual AutoMotive MarketPlace Model

VAMMP

J. L. Sullivan

UMTRI
There is much public discussion of Plug In Hybrid electric vehicles (PHEV).

They are a promising future vehicle technology that can help reduce fossil carbon emission and dependence on foreign oil.

Many are involve in their evaluation; at University of Michigan there are ongoing efforts by:
- Engineering
- ISR
- UMTRI

UMTRI’s focus is on market penetration, market viability.
UMTRI’s Approaches to Anticipating the Market for PHEVs

• Apply its Market (Social) Simulation Model to the PHEV question
 • Approach: Agent Based Modeling

• Apply Economic Modeling
 • Approach: UM Dynamic Household Vehicle Ownership and Use Model
Why Simulate?

Describe

- Common Framework
- Visualize
- Demonstrate
- Convince

Explain
Ways to Study a System

1. Experiment with the Actual system
2. Physical Model
3. Analytical Model
4. Simulation

Experiment with a model of the system

Mathematical model
Complex Adaptive Systems

• Complexity Science methods are available to explore the role of human behavior in the collective social response, i.e. bottoms up modeling
 ➢ Agent Based Modeling: social modeling, Computational Social Science

• Agents of interest here are consumer, regulators, legislators; motivated by:
 ➢ economics, convenience, utility, ethics, principles, concerns

• Important questions:
 ➢ When do agents exhibit unexpected collective behaviors?
 ➢ When do they shift their own behaviors?
 ➢ Where are the tipping points?
 ➢ What happens to markets?
Complex Systems Examples

- Schelling’s segregated neighborhoods of non-racist agents
- Sugarscape: surprising skewed distribution of sugar “wealth” reminiscent of today’s income distribution
- Hammond’s corrupt vs. honest society evolution
- Axtell’s work on Zipf distributions (power laws) of city and company sizes. He and R. Florida, grew artificial companies and cities.
- Epstein’s Artificial Genocide
- Axtell and Epstein’s Cyber Anasazi:
- Riolo et al “Evolution of Cooperation without Reciprocity”
- Axelrod’s “Spontaneous Emergence of Cooperation”
- Electric power distribution
- Financial markets: Brown, LeBaron, Kiyotaki & Wright, Duffy
- Organizational behavior

UMTRI 40 Years... The Science of Driving
Virtual AutoMotive MarketPlace
VAMMP

• It is a virtual marketplace comprised of virtual decision makers in software.

• The decision makers are represented by four classes:
 ✓ consumers
 ✓ government
 ✓ energy providers
 ✓ vehicle providers

• All agents act to achieve either their individual or organizational objectives
Modeling Objectives

• The modeling permits:
 ✓ estimation of PHEV penetration curves
 ➢ robustness of a market penetration
 ➢ rate of penetration
 ✓ elucidation of various influences on the marketplace, e.g.
 ➢ policy instruments (carbon taxes, CAFE, etc.)
 ➢ competing technologies
 ➢ fuel prices
 ✓ identification of circumstances that reveal potential tipping points, if any

• Because the model presents a virtual (surrogate) world, it not a predictive tool.
 ✓ But if sufficiently representative, it can provide:
 ➢ a sense of likelihood of outcome (e.g. successful market penetration)
 ➢ a sense of risk of failure
Region includes a city, a suburban ring, and two towns, each with low, middle and upper income zones.
Consumer Agents

• Agents have:
 - income
 - jobs
 - home and work addresses
 - transportation needs
 - transportation budgets: fixed and variable
 - vehicle preferences: size, performance, cost, brand, etc.
 - a choice of vehicles models
 - access to mass transit
 - sensitivity to fuel prices

• Agents are influenced:
 - By neighbors
 - By colleagues
 - By economics
OEM Agents

• Auto manufactures monitor sales
 ➢ They can change their product mix
 ➢ Introduce new technology
 ➢ They can offer price incentives

• Sales and profits are tracked.

• Two kinds of auto agents:
 ➢ new car manufactures
 ➢ used car sales
Vehicles

• Vehicles Properties:
 ✓ size: small, medium, and large
 ✓ performance levels: low, medium, and high
 ✓ fuel economy: city and highway
 ✓ retail price dependent on size and performance
 (large high performing vehicle have low fuel economy; small low performing vehicles have high fuel economy)

• They are made by three separate OEMs
Fuel Module

• Fuel changes in the model are currently exogenous.
 ➢ demand shocks not considered; supply shocks are

• Fuel considered are: gasoline, electricity, biofuels, etc.

• Fuel is considered ubiquitous
• Government monitors vehicle fleet fuel consumption and carbon dioxide emissions

• Government can act in the following ways:
 - impose a carbon tax
 - impose a fuel tax
 - impose CAFE regulations
 - impose a gas guzzler tax
 - offer tax credits
Model Flow

Setup
- Assign homes, jobs, income, transportation budget, car preference, driving distribution

- Initiate exogenous events as per scheduler

Miles&Fuel
- Compute miles driven & fuel consumed; adjust if needed

Sales Analysis
- Evaluate vehicles sales & revenue; adjust vehicle prices

Government action
- Based on environmental metrics, introduce endogenously: fuel taxes, fuel price changes, tax rebated, etc.

Consumer_Purchase
- If time to buy, find a vehicle and purchase it

Energy sector
- Based on demand and supply, adjust energy product prices.

Exit
- If \(t \leq n_cycles \) yes
- no
Has fuel price changed?

Yes

Estimate impact on budget: if overbudget, reduce mileage at agent specific rate

No

Compute mileage & Fuel consumption

Return to Main
Consumer Agent Purchasing Decision Hierarchy

• When it is time to buy:
 - Screen for available cars, new and used, within budget window
 - Score potential vehicles according to size and performance preferences
 - Rescore the revised list for brand preferences, if any.
 - Select the best; eliminate all others
 - From remaining list select those with agent’s new or used preference
 - In the final list, keep or remove special feature vehicles consistent with agent propensity
Base Case

• No market stimulus
Assigned Distribution

ON ROAD VEHICLES

NUMBER OF VEHICLES

FLEET ID NUMBER

New (t)
Used (t)
NEW (0)
USED (0)
After Conditioning

ON_ROAD VEHICLES

NUMBER OF VEHICLES

FLEET ID NUMBER

New(t)
Used(t)
NEW (t)
USED (t)
At end of run
At end of run

Normalized output

\(\frac{F(t)}{F(1)} \)

YEAR

2000 2006 2012 2018 2024

CAR_VMT
CAR_GASLN
TOT_GASLN
Case 1

• Fuel Price increase: $1.00/gal
$1.00/gal gasoline price increase
$1.00/gal gasoline price increase
$1.00/gal gasoline price increase

Normalized output

2000 2006 2012 2018 2024

YEAR

CAR_VMT
CAR_GASLN
TOT_GASLN
Case 2

- Change in vehicle price for model “2”
 - $-2k
 - $ 2k
Normalized output

$-2k$ price change for “2”

YEAR

CAR_VMT
CAR_GASLN
TOT_GASLN
$ 2k price change for “2”
Introduction of an HEV

\((S,P) = (2,2)\)

With and Without a Gov’t tax subsidy
\[(S, P) = (2, 2)\]
(S, P) = (2, 2); $2k subsidy
(S, P) = (2, 2); $3k subsidy
Introduction of an HEV

$(S,P) = (2,3)$

With and Without Gov’t tax subsidy
\[(S,P) = (2,3) \]
(S,P) = (2,3); $2k subsidy
Status of VAMMP

• Simulated market responses to various stimuli are quite consistent with actual market behaviors.
 ✓ Its estimates of HEV growth are in good accord with observation
 ✓ Model is now being applied to the more complicated PHEV case

• To be credible and yet fathomable, models must be complex but not too much.
 • Generative sufficiency is the core explanatory necessity
 • Want the essence without the clutter; what matters & what doesn’t
 • Models must be both verified and validated

• Is the model sufficiently detail? I think so and it appears we have the right detail.
 • “Nothing can be less real than realism. Details are confusing. It is only by selection, by elimination, by emphasis that we get at the real meaning of things.”

Georgia O’Keeffe
Acknowledgements

• The author acknowledges the many helpful discussions with Carl Simon, Irv Salmeen, and Walter McManus