Opportunities in the Green Race: U.S. versus China

Jun Ni

Shien-Ming (Sam) Wu Collegiate Professor of Manufacturing Science
Director, S. M. Wu Manufacturing Research Center
University of Michigan, Ann Arbor

Dean, UM– SJTU Joint Institute
Shanghai, China

November 16, 2011
Outline

• SWOT Analysis of Chinese Automotive Industry
• Green Race: U.S. versus China
• Opportunities for Collaboration
• Concluding Remarks
Key Statistics

- Annual production of degreed engineers over 1.6 millions
 - 0.6 million from 4-yr programs and
 - 1 million from 3-yr programs

- Manufacturing accounts for over 40% of China’s GDP (2009 data)

- Manufacturing employs 11% of total workforce and 90% of industrial workforce

- China became the second largest nation (15%) in global manufacturing output following US (21%)

- China became the largest automotive market in the world
Figure 1 Growth of Research and Development (GERD) in China, 1990-2009

Source: China Statistical Yearbook on Science and Technology (1992-2010), National Bureau of Statistics and Ministry of Science and Technology
China’s Manufacturing R&D Strategies

• National R&D Roadmap through a national long and medium range (5 to 15 years) planning exercise
• Curiosity-driven research supported by National Natural Science Foundation of China
• State key development projects funded by Ministry of Science and Technology’s 863 programs
• Basic key research projects funded by Ministry of Science and Technology’s 973 programs
• More emphasis on original innovations
• Encouragement of industry and university collaborations
• Incentives for setting up multinational R&D centers
16 National Priority S&T Initiatives
(1 Trillion RMB)

- Core Electronic Components
- High-end Chips and Fundamental Software
- Manufacturing Technologies and Equipment for VLSI
- High-end CNC Equipment and Fundamental Manufacturing Technologies
- New Generation Mobile Communication
- Development of Large Scale Oilfields and Gas Extraction in Coal Mines
- Advanced Nuclear Power Plant Core Technologies
- Water Pollution Control and Treatment
- Genetically Modified Crop Cultivation
- New Drug Discovery
- AIDS and Other Infectious Diseases Prevention and Control
- Large Aircraft
- High Resolution Earth Observation Systems
- Manned Space and Lunar Exploration
- Others
China’s Automotive Industry

Spent 40 years to reach 1,000,000; only 8 years to reach 2,000,000; just 2 years to reach 3,000,000; and 1 year to reach 4,000,000

1,000/yr
Needs and Wants

- Most Chinese OEMs \textit{want} to have their own brands.
- They also \textit{want} to be the innovators of high-value added products.

But,

- Chinese OEMs \textit{need} first to establish their core technical development teams.
- They \textit{need} to fully understand the know-hows, know-why's and establish vehicle integration capability.
SWOT Analysis for Chinese Automotive Manufacturers

(S-Strength):

• Market (World #1 market since 2009)
• Strong government support for R&D investment
• Strong government incentives for new energy vehicles
• Access to all major global suppliers
• Low cost manufacturing
(W-Weakness):

- Lack of key knowledge base, technical know-how and know-why
- Lack of system design and vehicle integration capability
- Weak in product innovation and development
- Weak in automotive engineering talent pool
(O-Opportunity):

- Strong economic development in China – plentiful capitals (e.g., Volvo, Saab purchases)
- Bonus of globalization -> MNCs move production facilities to China
- Emergence of global R&D centers in China
- Significant market expansion
- Competitive workforce
- Opportunity for global alliance (e.g., GM/SAIC)
SWOT Analysis for Chinese Automotive Manufacturers

(T-Threat):

• Complacency.
• Over expansion.
• Overly ambitious introduction of new energy vehicles.
Opportunity for U.S. Companies

• Double-digit growth auto market
• Global manufacturing center
 – Low labor and operational costs
 – Abundant labor and skilled resources
• Global purchase center
 – Competitive price
 – Quality products
 – Good logistic infrastructures
• R&D center
 – Large annual number of engineering graduates
• Emerging service sectors:
 – Financing, legal, trading, marketing, I.T., engineering, testing, after-market, education etc.
Green Race: U.S. Strength and Weakness

• Strength:
 – Profound knowledge base and technical foundation in automotive engineering and manufacturing
 – High concentration of automotive R&D talents, particularly in Michigan area
 – Strong fundamental research and innovations in universities
 – Government investment in clean energy technologies

• Weakness
 – Lack of supply chains for critical systems, such as battery
 – Inefficiency in establishing new public policies to promote the early adoption of clean vehicle technologies
Green Race: China’s Strength and Weakness

• Strength
 – Significant government support for clean vehicle technologies to make up for their lagging in conventional IC automotive technologies
 – Efficiency in government to establish incentives for adopting new clean vehicle technologies
 – Mass production capability to make products cheaply
 – Strong applied research at universities
 – Abundant labor and skilled resources

• Weakness
 – Lack of vehicle engineering and system integration capability
 – Weak in system-level design and optimization
 – Lack of skills to compete in global markets
By the end of 2010, China has achieved the following stunning new energy developments:
• Hydro-electrical power generation: 197 GW (#1 in the world)
• Wind power generation: 42 GW (#1 in the world)
• Nuclear power generation: 9.17 GW from 11 power stations
 – 30 newly approved power stations: 32.7 GW
 – 23 power stations under construction (#1 in the world)
• Solar water heating capacity (#1 in the world)
• PV solar cell production: 4 GW/yr (#1 in the world, 40% worldwide production)
• Biomass electrical generation: 4.5 GW
Green Race: Opportunities for Collaboration

• Complimentary strengths in clean vehicle technologies
 – U.S. innovations, system engineering and integration
 – Chinese productions, battery technologies and supply chains

• U.S. and Chinese auto markets are big enough for both countries to win.

• It might be easier for certain regions in China to be early adopter of clean vehicle technologies, which could serve as a pilot ground for wide adoption back in U.S.
Barriers for Chinese Auto Companies to Enter U.S. Market

- Sales, distribution and service network
- Quality, reliability and safety standards
- Psychological barriers to set up factories in U.S.
- Lack of managerial talents who have the trust from home headquarters and also the necessary executive skills and experience dealing with American workers
Challenges to Chinese Economy

- Inflation and rising commodity costs
- Rapid rise in labor costs
- Housing bubbles
- Weak world economy slows down exports
- Currency
- High unemployment
- Increased inequality between coastal and in-land regions
- Continuing reforms in financial institutions and state owned enterprises (SOE)
- Political and social stability
Opportunity for U.S. Companies

• Double-digit growth in auto market
• Global manufacturing center
 – Low labor and operational costs
 – Abundant labor and skilled resources
• Global purchase center
 – Competitive price
 – Quality products
• R&D center
 – Large annual production of engineering graduates
• Emerging service sectors:
 – Financing, legal, trading, marketing, I.T., engineering, testing, after-market, education etc.
Joint U.S.-China Consortium on Clean Vehicles

• U.S. and China have signed bilateral governmental agreement to promote research collaborations in clean energy (building, coal, and vehicles).
• The University of Michigan has formed a large clean vehicle research consortium consisting of several leading US universities, national labs and key automotive OEMs and suppliers, as well as key Chinese universities and companies.
• This Consortium will address technical areas of (i) biofuels and clean combustion, (ii) vehicle electrification, (iii) energy storage and harvesting, (iv) lightweight structures, and (v) system integration and demonstration.
CERC-Clean Vehicle Consortium: a Research Center support by US-DOE, China-MOST and industrial funding

PI: Minggao Ouyang (Tsinghua University, China) and Huei Peng (UM, USA)

$50M over 5-year (2011-2015) to support six research areas critical for Clean Vehicles

- Vehicle Electrification
- Energy Systems Analysis, Technology Roadmaps and Policies
- Batteries and Energy Conversion
- Lightweight Structures
- Advanced Biofuels and Clean Combustion
- Vehicle-Grid Interface
Concluding Remarks

• Global green race will be very competitive.

• It is impossible to have exclusive winners.

• U.S. and China should and can collaborate in this green race to create win-win partnerships.

• By collaborating, both countries can achieve fast and better realization of wide adoption of clean vehicle technologies.
Thank You!

For further information, please contact: junni@umich.edu