Global Powertrain Development at Ricardo

Powertrain Strategies for the 21st Century: Designing Global Powertrains

July 2012
Agenda

- Introduction to Ricardo
- Advanced Technology Development and Market Entry
- Engine Development Examples
- Competitive Cost Management
- Driveline and Hybridization
Ricardo is one of the world's leading management & engineering consulting firms

Established Success Factors

- Focused on value-adding services
- Solving key industry issues
- Programme delivery as a core competence
- Investment in people and technology
- Critical mass with revenues exceeding £190m and over 1800 people
- Independent and long established (1915)

Value-Adding Capabilities

International Presence

Global Client Base (selection)
Ricardo’s contribution to some key developments in the history of transportation

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1915</td>
<td>Engine Patents Ltd.</td>
<td>Harry Ricardo formed Engine Patents Ltd, the precursor of today’s Ricardo Plc becoming famous for the design of a revolutionary engine which was utilised in tanks, trains and generators.</td>
</tr>
<tr>
<td>1930</td>
<td>Fundamental Fuel Research</td>
<td>Development of a variable compression engine which was used to quantify the performance of different fuels. This was the forerunner of today’s Octane rating scale (RON).</td>
</tr>
<tr>
<td>1935</td>
<td>Citroën Rosalie</td>
<td>The world’s first diesel production passenger car, the Citroën Rosalie, was introduced featuring a Comet Mk III combustion chamber. Derivatives of this design are still used.</td>
</tr>
<tr>
<td>1951</td>
<td>Fell Locomotive</td>
<td>The 2,000bhp Fell Locomotive was the world’s first diesel mechanical locomotive, with a novel transmission invented by Lt. Col Fell. It was powered by four Paxman-Ricardo engines.</td>
</tr>
<tr>
<td>1966</td>
<td>Jensen FF</td>
<td>The 4WD system of the Jensen FF, the world’s first 4WD passenger car, was developed by Ferguson Research Ltd (which later became part of Ricardo) launched at British Motor Show.</td>
</tr>
<tr>
<td>1986</td>
<td>Voyager</td>
<td>Voyager was the first aircraft to fly around the world non-stop without refuelling. Ricardo redesigned the Teledyne Continental engine, improving fuel economy and reducing drag.</td>
</tr>
<tr>
<td>1999</td>
<td>Le Mans Successes</td>
<td>Advanced technology helped Audi to secure its special place in motorsport history with a novel transmission to win 5 races out of 6 entries at the 24-hour race of Le Mans.</td>
</tr>
<tr>
<td>2005</td>
<td>Bugatti Veyron</td>
<td>Development and manufacturing of the DCT (dual clutch transmission) for the fastest road going car in the world, the Bugatti Veyron.</td>
</tr>
<tr>
<td>2006</td>
<td>Record Breaking Year</td>
<td>Development of the world's fastest diesel engine for JCB. The DieselMax set the diesel land speed record at Bonneville with a speed of 350 mph (563 kph).</td>
</tr>
<tr>
<td>2011</td>
<td>NHTSA/CAFÉ Fuel Economy</td>
<td>Ricardo helped shape future North American CAFE Fuel Economy Ruling.</td>
</tr>
</tbody>
</table>
Ricardo’s world wide footprint allows us to support clients in their local markets

1800+ people based in main automotive centres around the world
Ricardo’s advanced propulsion technology market strategy development process

Potential Growth Options for PowerGenix

- **Vehicle Type**: Urban Buses, Long-Range Buses, Heavy-Duty Buses, Military Vehicles
- **Battery Technology**: LiFePO4, LiFeNi, LiMnO2
- **Vehicle Performance**: 20-50 Seats, 73 passengers
- **Battery Capacity**: 64 Ah
- **Energy**: 37 kWh
- **System Voltage**: 800 V
- **Cell Internal Resistance**: 1.4 m Ohms
- **Continuous Charge Current**: 40-60%
- **Peak Discharge Power**: 170-200 kW
- **Discharge Voltage**: 170-200 kW
- **Power Generation**: Optimistic Scenarios
- **Volume**: Xiamen Jinlong, Yutong
- **Target VM**: Yuchai, DFM
- **Powertrain**: HEV
- **Bus**: Electric
- **Operational Range**: 800L
- **Weight**: 475-500 kg
- **Kerb weight**: 13.2 Tonnes
- **Life-cycle Battery Cell Cost (NiZn, China)**: 6 years

Define Opportunity

- **Growth Option 1**: Bus market Entry
- **Define Strategy**
 - **Market Definition**: Target Chinese Domestic Bus VMs and down-stream integrators (eg. Yuchai, Weichai)
 - **Sales Channel**: Dual approach: Down-stream integrators, who integrate and sell solutions to bus VMs; sell bus powertrain packages to bus manufacturers, who integrate the drive-train into a chassis and may also integrate and sell solutions to bus VMs; sell bus power-train packages to bus manufacturers, who integrate the drive-train into a chassis and may also integrate and sell solutions to bus VMs
 - **Product Definition**: Dual approach: Down-stream integrators, who integrate and sell solutions to bus VMs; sell bus power-train packages to bus manufacturers, who integrate the drive-train into a chassis and may also integrate and sell solutions to bus VMs
 - **Value Proposition**: Dual approach: Down-stream integrators, who integrate and sell solutions to bus VMs; sell bus power-train packages to bus manufacturers, who integrate the drive-train into a chassis and may also integrate and sell solutions to bus VMs

Technology Requirements

- **Full Hybrid Bus Vehicle Battery Requirements**
 - **Typical Vehicle**:
 - **Manufacturer**: Shanghai Bus Company
 - **Model**: Urban Bus
 - **Typical Battery Requirement**:
 - **Battery Capacity**: 64 Ah
 - **Energy**: 37 kWh
 - **System Voltage**: 800 V
 - **Cell Internal Resistance**: 1.4 m Ohms
 - **Continuous Charge Current**: 40-60%
 - **Peak Discharge Power**: 170-200 kW
 - **Discharge Voltage**: 170-200 kW

Identify Target Program

- **Target Bus VM and Integrator Customer Programs**
 - **Vehicle Type**:
 - **Bus**: Electric
 - **Target VM**: Yuchai, Weichai
 - **Powertrain**: HEV
 - **Energy**: 37 kWh
 - **System Voltage**: 800 V
 - **Cell Internal Resistance**: 1.4 m Ohms
 - **Continuous Charge Current**: 40-60%
 - **Peak Discharge Power**: 170-200 kW
 - **Discharge Voltage**: 170-200 kW

Filter Target Customer

- **Long List of Potential Bus VM & Integrator Customers**
 - **Target VMs and Integrators**
 - **Bus VMs**: Xiamen Jinlong, Yutong, Shenzhen, CSR Times, GAIG Bus, Wuzhoulong, FAW Bus, BAIC, Zhongtong, ANX, ATL, Lishen (LiFePO4), MGL (LiMnO2)
 - **Bus Powertrain**: Yuchai, DFM, BAIC, Zhongtong, ANX, ATL, Shenzhen, CSR Times, GAIG Bus, Wuzhoulong, FAW Bus, BAIC, Zhongtong, ANX, ATL

Source: Ricardo Analysis
Ricardo scientists and engineers continue to develop and improve combustion engine technology

Advanced Combustion Technology for Improved engine-Out NOx

Test Data

System Optimisation Code

System Modelling

Vehicle Simulation

Analysis Thermal / FE

Low Compression Ratio Combustion System Design

Closed-Loop Model Based Control Developments

Cold Start & Drive Enablers

Fuel Injection Technology

EGR & Boosting System Developments

Low ENGINE-OUT NOx

Ricardo plc 2012
One of our latest accomplishments is the design and manufacture of the McLaren supercar engine.

McLaren MP4-12C Avoids Gas Guzzler Tax

- 3.8L Twin Turbo V8
- 592 Horsepower
- 443 ft-lbs peak torque
- 0-60 in 3.1 seconds
- Redline 7000 RPM
- 22 MPG EPA Highway
Our work for a regional OEM is a prime example of Ricardo’s capabilities to support development from beginning to end.

Projects Overview

- **Powertrain Seminar** (3 days)
 - Product Group conducted a three day seminar at OEM covering future engine and transmission technologies.
 - This triggered a discussion at OEM about their future engine strategy.
 - OEM subsequently asked Ricardo to assist with development of its future long term powertrain strategy.
 - R-UK handed over lead for proposal development to RSC Asia.

- **Long-term Power-train Strategy** (5 months)
 - Ricardo Strategic Consulting developed the long term engine and transmission strategy over five months.
 - Close collaboration between RSC, R-Malaysia and R-UK.
 - Two phased approach with RSC leading Phase 1 but much stronger R-UK participation in Phase 2 (Phase 2).
 - Key recommendation was to develop own engine programme.

- **Engine Feasibility Study** (6 months)
 - Six months concept feasibility study 3 years prior to SOP.
 - Engine concept proven and demonstrated.

- **Procurement and Quality Support** (6 months)
 - Procurement of first wave of components for new engine.
 - Very operational approach with emphasis on learning to doing.

Source: Ricardo Strategic Consulting.
After the architecture is defined, design begins with emissions and fuel economy targets.

USA

- Tier I
- Tier II
- CAFE (NHTSA)

California

- LEV2

Europe

- Euro 4 (2005)

Approximate Comparison of EU and US Legislation

- Predicted NOx vs PM over FTP-75 cycle for various applications with Euro 4 PC technology

Engine Development Examples

- Temperature (K)
- Local Equivalence Ratio
- Soot formation area
- NOx formation area

- Euro III
- ~3L Small SUV
- ~4.5L Mid SUV
- ~6L Large SUV

- Euro IV (2005)
- T2 Bin 10 (Max for HLDT)
- T2 Bin 9 (Max for LDV/LLDT)
- T2 Bin 8

NOx (g/mile)

- PM (g/mile)
- Euro legislation represents Diesel passenger car

© Ricardo plc 2012
Concurrent with design, supplier qualification, sourcing, and component costs are established.
Powertrain components are sourced in successive waves based on their cost and development lead time.

Commodity Segmentation

<table>
<thead>
<tr>
<th>Cost Contribution</th>
<th>Development Lead Time Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

Wave 1: High Cost, Short Lead Time
- ECU
- Catalyst
- Sensors
- ECU
- Cyl. Block
- Fuel System

Wave 2: Medium Cost, Medium Lead Time
- Turbo
- Composites
- Valves
- Engine Covers
- Alternator
- A/C Compressor
- HPAS
- Starter
- VVT

Wave 3: Low Cost, Long Lead Time
- Sealing excl. Head Gskt
- Flexplate
- Flywheel
- Other
- Turbo
- Other

Source: Ricardo Strategic Consulting
Driveline and Hybridization

Additional final drive ratios enable downsizing allowing engine to operate in narrower peak power and efficiency bands

<table>
<thead>
<tr>
<th>Technology Development</th>
<th>Benefits to Boosted Vehicles</th>
<th>Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Increase in the number of speeds offered by conventional planetary-torque converter automatics from the US standard 4 speeds to 6/7 combined with adaptive control strategies</td>
<td>+ Diesel engines with high torque at low engine speeds can capitalize on overdriven gears to reduce engine speed during cruising conditions and benefit from low gearing to improve launch feel</td>
<td></td>
</tr>
<tr>
<td>CVT / IVT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Automatic transmissions using a variator to offer step-less ratio selection</td>
<td>+ Continuously variable ratios can be used to ensure the driveability of downsized / boosted engines by keeping the engine within its optimum operating window</td>
<td></td>
</tr>
<tr>
<td>DCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Hydraulically actuated, twin input shaft automated manual transmissions offering gear pre-selection and shifting without torque interrupt to optimize shift speed and quality</td>
<td>+ Increased ratio spread and control capabilities improve the driveability of downsized / boosted engines with mechanical efficiency approaching that of conventional manual transmissions</td>
<td></td>
</tr>
</tbody>
</table>
Hybridization of heavy vehicles shows substantial opportunities to reduce fuel consumption.