The Viability of Sustainability: The Role of Clean Diesel

Alexander Freitag
Director Engineering
Diesel Systems Development
Robert Bosch LLC

reduced by Bosch

University of Michigan Transportation Research Institute
“Focus on the Future”
Automotive Research Conferences
“Focus on the Future” UMTRI conference 13 Feb. 2013

Topics:

- Market Trends and Regulations
- Future approach
 - Air & Fuel management
 - Exhaust Gas Management
 - Tolerance Reduction
 - Combustion Process
 - Powertrain
- Summary
“Focus on the Future” UMTRI conference 13 Feb. 2013

Topics:

- Market Trends and Regulations
 - Future approach
 - Air & Fuel management
 - Exhaust Gas Management
 - Tolerance Reduction
 - Combustion Process
 - Powertrain
 - Summary
Changing Requirements

- CO\(_2\) / Fuel Economy
- Emissions (HC, CO, NO\(_x\), Particulates)
- Power / Comfort
- Renewable Fuels
- Fossil Fuels

Resources

- ACEA-Selbstverpflichtung 2008: 140g/km (-25%)

Bosch Innovations

“Focus on the Future” UMTRI conference 13 Feb. 2013
US PC/LD Emissions Evolution:

More than 90% reduction in criteria emissions in 10 years

2009 Clean Diesel Vehicles

2006 vehicles

1999 vehicles

Tier 1

Tier 2

Bin 2

Bin 8

Bin 9

Bin 10

2009 Clean Diesel Vehicles

D/EIS-NA | 02.06.2013 | 1382_046.ppt © 2013 Robert Bosch LLC and affiliates. All rights reserved.
Development CO₂ fleet targets

<table>
<thead>
<tr>
<th>g CO₂ / km</th>
<th>l/100 km</th>
<th>mpg</th>
<th>km/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>10,5</td>
<td>22,3</td>
<td>9,5</td>
</tr>
<tr>
<td></td>
<td>9,4</td>
<td>24,9</td>
<td>10,5</td>
</tr>
<tr>
<td>200</td>
<td>8,4</td>
<td>27,9</td>
<td>11,9</td>
</tr>
<tr>
<td></td>
<td>7,5</td>
<td>31,2</td>
<td>13,3</td>
</tr>
<tr>
<td>150</td>
<td>6,3</td>
<td>37,2</td>
<td>15,9</td>
</tr>
<tr>
<td></td>
<td>5,7</td>
<td>41,5</td>
<td>17,5</td>
</tr>
<tr>
<td>100</td>
<td>4,2</td>
<td>55,7</td>
<td>23,8</td>
</tr>
<tr>
<td></td>
<td>3,8</td>
<td>62,3</td>
<td>26,3</td>
</tr>
<tr>
<td>50</td>
<td>2,1</td>
<td>113</td>
<td>47,6</td>
</tr>
</tbody>
</table>

US CAFE

Cars

\[35.5 \text{ mpg}^*\]

LT

\[54.5 \text{ mpg}^*\]

* Combined fleet average

CAFE = Corporate Average Fuel Economy PC = Passenger Cars LT / LDT = Light Trucks (pick-ups, vans, SUVs) CARB = California Air Resources Board mpg = miles per gallon

Stringent requirements by 2025
MY2011 Passenger Car CAFE Fleet Data

Bosch Footprint Based Segments

Source: Martec 2011/Bosch

MY2017 - MY2025 targets based on corrected NPRM 11/30/11
MY2011 Passenger Car CAFE Fleet Data

Gasoline and Diesel Passenger Cars

<table>
<thead>
<tr>
<th>Model</th>
<th>MY2016</th>
<th>MY2021</th>
<th>MY2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jetta Sportwagon Diesel</td>
<td>14%</td>
<td>18%</td>
<td>25%</td>
</tr>
<tr>
<td>Golf Diesel</td>
<td>15%</td>
<td>4%</td>
<td>23%</td>
</tr>
<tr>
<td>Jetta Sedan Diesel</td>
<td>2%</td>
<td>62%</td>
<td>48%</td>
</tr>
<tr>
<td>BMW 3-Series Gasoline</td>
<td>0%</td>
<td>23%</td>
<td>7%</td>
</tr>
<tr>
<td>BMW 3-Series Diesel</td>
<td>23%</td>
<td>94%</td>
<td>11%</td>
</tr>
<tr>
<td>Audi A3 Diesel</td>
<td>25%</td>
<td>11%</td>
<td>66%</td>
</tr>
</tbody>
</table>

MY2017 - MY2025 targets based on corrected NPRM 11/30/11

Source: Martec 2011
U.S. Clean Diesel Vehicle Launch Calendar

<table>
<thead>
<tr>
<th>Year</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016≤</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Audi A6 (3.0L)</td>
<td>Audi A7 (3.0L)</td>
<td>Audi A8 (3.0L)</td>
<td>BMW 325 (2.0L)</td>
</tr>
<tr>
<td></td>
<td>Chevrolet Cruze (2.0L)</td>
<td>Mazda 6 (2.2L)</td>
<td>MB E250 (2.2L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VW Beetle Conv. (2.0L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Audi Q5 (3.0L)</td>
<td>Jeep Grand Cherokee (3.0L)</td>
<td>MB GLK 250 (2.2L)</td>
<td>MB ML 250 (2.2L)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truck/Van</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ford Transit (3.2L)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Announced by OEM

Not Announced by OEM
“Focus on the Future” UMTRI conference 13 Feb. 2013

Topics:

➢ Market Trends and Regulations

➢ Future approach
 ➢ Air & Fuel management
 ➢ Exhaust Gas Management
 ➢ Tolerance Reduction
 ➢ Combustion Process
 ➢ Powertrain

➢ Summary
Powertrain diversification for Today and the Future

- Gasoline
- Diesel
- Alternative fuels
- Hybrid
- EV / range extender
- EV / battery
- EV / fuel cell
- EV (battery / fuel cell)

Variety of Technical solution needed to address energy reduction
New powertrains: Estimated world market volumes

- ICE (gasoline / diesel / FlexFuel)
- Full Electric Vehicles
- Hybrid Vehicles (w/ ICE Engine)
- Others (CNG, LPG)

Source: Internal

Internal Combustion Engines will remain the predominant power train for the near future
Optimizing the Diesel System

Air Management
- Swirl-/Throttle Valve
- Turbo Charger/VGT*

Combustion Process
- Reduction of compression ratio
- Combustion strategies

Fuel Injection System
- New Generations
- Multiple Injections
- Reduced Tolerance
- Optimized Nozzle

Exhaust gas management
- Fast Catalyst Light-Off (reduce thermal losses)
- Diesel Particulate Filter
- NOx storage catalyst
- Catalyst temp control

Tolerance Reduction
- Zero Fuel Calibration
- Fuel Balancing Control
- Individual Cylinder Control

*VGT= Variable Geometry Turbo
Optimizing the Diesel System

Combustion Process
- Reduction of compression ratio
- Combustion strategies

Air Management
- Swirl-/Throttle Valve
- Turbo Charger/VGT*

Fuel Injection System
- New Generations
- Multiple Injections
- Reduced Tolerance
- Optimized Nozzle

Tolerance Reduction
- Zero Fuel Calibration
- Fuel Balancing Control
- Individual Cylinder Control

Exhaust gas management
- Fast Catalyst Light-Off (reduce thermal losses)
- Diesel Particulate Filter
- NOx storage catalyst
- Catalyst temp control

*VGT= Variable Geometry Turbo
Hybrid: No longer a gasoline story

Fuel Consumption in g/kWh

Disadvantage Area

NO\textsubscript{X}

Soot

Engine Speed [rpm]

BMEP [bar]

Engine Speed [rpm]

BMEP [bar]

Engine Speed [rpm]

BMEP [bar]

NO\textsubscript{X}

Soot

CO

HC

Low

High

Low

Low

High

Low

High

Low

Low
“Focus on the Future” UMTRI conference 13 Feb. 2013

<table>
<thead>
<tr>
<th></th>
<th>Mild Hybrid</th>
<th>Strong Hybrid w/ mech. drive</th>
<th>Strong Hybrid w/o mech. drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Power demand</td>
<td>Low</td>
<td>Mid</td>
<td>High</td>
</tr>
<tr>
<td>Recuperation Potential</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Performance in Electric Driving</td>
<td>Very Low</td>
<td>High</td>
<td>Very high</td>
</tr>
<tr>
<td>Efficiency Chain of Drivetrain</td>
<td>Mid</td>
<td>High</td>
<td>Mid</td>
</tr>
<tr>
<td>CO₂ Potential</td>
<td>Mid</td>
<td>High</td>
<td>Mid</td>
</tr>
<tr>
<td>Architectures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Elimination of engine low load area requires pure electrical driving
- Parallel architecture with a single clutch is a smart solution with low complexity
Parallel Strong Hybrid – Single Clutch

- Diesel Engine: DI 1.6l, Pmax = 85 kW
- Gearbox: 6-speed AMT
- E-Motor: IMG, Pmax = 25 kW
- Battery: Li-Ion, Capacity = 1.5 kWh

AMT: Automated Manual Transmission
IMG: Integrated Motor Generator
SES: Standard Electric Starter

Elimination of engine low load area requires pure electrical driving
Parallel architecture with a single clutch is a smart solution with low complexity
Split Test:
Battery balance is also forced at the end of UDC.

CO₂ emission reduction by combining urban with extra urban driving.

* Basis: CO₂ Emission in g of Conventional Vehicle in NEDC
Basis: CO₂ Emission in g/km of Conventional Vehicle* in NEDC

*Conventional Vehicle: 1470 kg IW, 1.6 l Diesel Engine, Euro 5; HEV: 1590 kg IW, 1.6 l Diesel Engine + 25 kW E-Motor

Reduced CO₂ emission difference between urban and extra urban driving with hybrid
Topics:

- Market Trends and Regulations
- Future approach
 - Air & Fuel management
 - Exhaust Gas Management
 - Tolerance Reduction
 - Combustion Process
 - Powertrain

- Summary
Summary:

- Cont. work ongoing to further improve fuel economy
- Diesel will maintain advantage compared to gasoline
- LEV III work ongoing
- New Technologies provide emissions benefit
- GHG reduction work ongoing
- New Technologies provide GHG benefit
- Full system approach required to meet
 - FE and criteria emission targets
Thank You